Large Language Model Training Techniques: From Basics to Advanced

Large Language Model Training Techniques

Large language model training is a complex system engineering, and this article will delve into the key technologies and best practices.

Distributed Training Architecture

1. Data Parallelism

1
2
3
4
5
6
7
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

def setup(rank, world_size):
dist.init_process_group("nccl", rank=rank, world_size=world_size)

model = DDP(model, device_ids=[local_rank])

2. Model Parallelism

  • Tensor Parallelism
  • Pipeline Parallelism
  • Mixture of Experts

Training Optimization Techniques

1. Mixed Precision Training

1
2
3
4
5
6
7
8
9
10
11
from torch.cuda.amp import autocast, GradScaler

scaler = GradScaler()

with autocast():
output = model(input)
loss = criterion(output, target)

scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

2. Gradient Accumulation

1
2
3
4
5
6
7
8
for i, (input, target) in enumerate(dataloader):
output = model(input)
loss = criterion(output, target) / accumulation_steps
loss.backward()

if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()

3. Optimizer Selection

  • AdaFactor
  • Lion
  • DeepSpeed ZeRO

Memory Optimization

1. Gradient Checkpoint

1
2
3
4
5
from torch.utils.checkpoint import checkpoint

def forward(self, x):
h = checkpoint(self.layer1, x)
return self.layer2(h)

2. Memory Management

  • Dynamic Unloading
  • Selective Saving
  • Gradient Compression

Training Monitoring and Debugging

1. Training Monitoring

1
2
3
4
5
from torch.utils.tensorboard import SummaryWriter

writer = SummaryWriter('runs/experiment_1')
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)

2. Performance Analysis

1
2
3
4
5
6
7
8
9
10
import torch.profiler as profiler

with profiler.profile(
activities=[
profiler.ProfilerActivity.CPU,
profiler.ProfilerActivity.CUDA,
]
) as prof:
model(input)
print(prof.key_averages().table())

Training Stability

1. Gradient Clipping

1
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

2. Learning Rate Scheduling

1
2
3
from torch.optim.lr_scheduler import CosineAnnealingLR

scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs)

Distributed Training Best Practices

  1. Data Preprocessing

    • Data Pipeline Optimization
    • Pre-fetch Mechanism
    • Cache Strategy
  2. Communication Optimization

    • Gradient Compression
    • Communication Scheduling
    • Bandwidth Optimization
  3. Fault Tolerance Mechanism

    • Checkpoint Saving
    • Failure Recovery
    • Dynamic Scaling

Common Issues and Solutions

  1. OOM (Memory Insufficient)

    • Batch Size Adjustment
    • Gradient Accumulation
    • Model Sharding
  2. Training Instability

    • Gradient Clipping
    • Learning Rate Adjustment
    • Warm-up Strategy
  3. Performance Bottleneck

    • Communication Overhead
    • Data Loading
    • Calculation Efficiency

Future Prospects

  1. More Efficient Parallel Strategy
  2. Adaptive Training Method
  3. Green Computing Technology
  4. New Hardware Adaptation

Reference Materials

  1. DeepSpeed Documentation
  2. Megatron-LM Paper
  3. PyTorch Distributed Training Guide

This article will be continuously updated. Welcome to discuss and share.